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1.0 SUMMARY 
The objective of this effort is to: (a) develop novel and fundamental methodologies for data 

representation using hardware spike timing dependent encoding for neuromorphic processors; (b) 
explore the applications of neuromorphic computing in channel estimation for the Multiple-Input 
and Multiple-Output (MIMO) communications. This project will introduce an interdisciplinary 
approach for exploring the application of neuromorphic computing in wireless communications. 
This will bridge high-performance computing, nanotechnology, and telecommunications, as well 
as improve the computational efficiency and accuracy of channel estimation in MIMO 
communications. The project’s envisioned architecture will serve as the foundation for 
unprecedented capabilities in real-time applications such as the MIMO channel estimation that fall 
within Air Force Research Lab (AFRL) communication and computing consolidated programs. 



Approved for Public Release; Distribution Unlimited.  
 2  

 

2.0 INTRODUCTION 
The Air Force is becoming a network-enabled paradigm, wherein many of its capabilities will 

be generated through, and dependent on, the integrated efforts of multiple components. In general, 
robust dynamic tactical networks can support 10,000 to 500,000 communicating devices in theater. 
It goes beyond the traditional tactical network, which is oriented to the voice and human users, 
and beyond traditional ad hoc networks. Furthermore, the Air Force network must provide robust 
data and communication services to tens or hundreds of fixed and mobile users with different 
service levels. Some of the service challenges include guaranteed rates, communication over 
difficult channels, hard time-deadlines, security, and policy-driven resource allocation. These 
characteristics are primarily driven by defense needs. 

 
As semiconductor technologies continue to scale further into the nanometer regime, it is 

important to study how non-traditional computer architectures may be uniquely suited for many 
emerging technologies. Neuromorphic computing systems represent a type of non-traditional 
architecture. The emerging field of neuromorphic computing is close to achieving a critical mass 
that will enable significant improvement and novel applications to mission critical problems. 
Neuromorphic computers promise to solve a number of specific classes of stressing problems that 
clearly have not been solved by the leveraging of the current state-of-the-art in Complementary 
metal–oxide–semiconductor (CMOS) digital computing. Furthermore, there are growing 
expectations that functions difficult to perform efficiently even with large clusters of high-
performance computers or supercomputers will one day be accomplished with neuromorphic 
processors that embody approaches to computing that are found in the natural world. 

 
The scope of this proposed research is to develop a novel technology that builds integrated 

computational environments for neuromorphic computing systems and distributes a set of 
advanced computational platforms based on this technology to achieve improved performance in 
channel estimation for MIMO communications. Comparing with current technologies, this project 
is to build a brain-like computing system with analog reservoir integrated circuits, which can offer 
potentially disruptive capabilities in the real time signature analysis, time series predictions, and 
the environmental perception for autonomous operations and dynamic control systems. The 
resulting dynamic time-series data will be processed using reservoir computing processors. 
Current predictive control strategies typically take the form of black-box systems. These systems 
are based on process models built from physical concepts and data-driven simulations that cannot 
cope with problems that have strong temporal aspects. By contrast, control systems built on the 
nonlinear dynamics of reservoir computing are capable of addressing these issues and have the 
potential to form the foundation for a new generation of deterministic adaptive processors.  

 
The key technologies and components for successfully achieving the goals of this proposal are: 

design and analysis of the spiking neuron with multiplexed temporal scales, development of a 
reservoir computing platform with time series spike encoding, application of reservoir computing 
to the multi-channel estimation in MIMO systems. The project can be summarized into two 
interconnected research thrusts:  

 
1) Thrust 1: design and implement analog neuron for data representation using spike timing 

dependent encoding in neuromorphic computing systems. 
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In the proposed research, we will compare the analog and digital implementations of 
neurons using Leaky Integrate-and-Fire (LIF) model, and design a robust and compact 
analog neuron using CMOS technology. We will show how signal-processing tasks can be 
modularly decomposed into elementary operators. Analog neurons were chosen rather than 
a digital implementation for power and area efficiency considerations. Design aspects such 
as integration time, threshold voltage, refractory period, and encoding resolution will be 
examined in an effort to optimize the adaptability and configurability of the neurons’ 
operational parameters. The designed neuron’s power consumption, area, robustness to 
process variability, and signal-to-noise ratio will also be reported. 
 

2) Thrust 2: explore the application of reservoir computing in MIMO Communications. 
In this project, we will employ the reservoir computing to communication channel 
estimation in MIMO systems.  Reservoir computing employs artificial recurrent neural 
networks in a way that has recently been proposed independently as a learning mechanism 
in biological brains. The learning method is computationally efficient and easy to use. We 
will apply reservoir computing to the channel estimation for MIMO systems (channel 
transfer matrix based estimation and parametric channel model based), and demonstrate its 
computational efficiency and accuracy improvement. 

 
The proposed research will introduce an interdisciplinary approach for the spike timing 

dependent encoding integrated circuit design, and explore the promising applications of 
neuromorphic computing in wireless communications. The implementation of real-time 
neuromorphic systems is ideal for the pattern and signature recognition in mobile platforms with 
severe size, weight, and power (SWAP) constraints. As a practical matter, such resource 
restrictions rule out traditional software approaches, which often require high-performance 
processing or run too slowly due to the inherent serial nature of von Neumann architectures.  

 
We summarize the new technical ideas embodied by the research and list as follows: 

• Robust and compact analog neuron design with CMOS technology, which exploits the physical 
characteristics of the hardware to more closely mimic biological neurons. 

• Avoid using power-consuming analog-to-digital converters (ADCs) and operational amplifiers 
(Op-AMPs), leading to a substantial reduction in power consumption and die area in the design. 

• Spike timing dependent encoder design with the inter-spike intervals (ISI) encoding, making 
use of the correlations between spike times that cannot be explained by rate modulations 

• Application of reservoir computing to wireless communication and networks. Reservoir 
computing holds great promise for many important engineering and scientific applications. 
Such system exhibits rich dynamical behaviors within a simple architecture, and is capable of 
high-speed parallel signal processing. 
 
The expected impacts of the research are listed as follows: 

• This work will result in an agile analog integrated-circuit implementation of a spike timing 
dependent encoding circuit as a signal conditioner for reservoir computing systems. 

• The proposed approach allows us to avoid using power-consuming analog-to-digital converters 
(ADCs) and operational amplifiers (Op-AMPs), which significantly reduces power 
requirements and design area. 
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• The proposed hardware implementation is capable of exploring the full potential of the intrinsic 
parallelism of neural networks for generating revolutionary applications in time-series data 
analysis, processing, and control. 

• The proposed circuits and systems are ideal for cognitive computing in mobile platforms with 
severe size, weight, and power (SWAP) constraints. 
 
The research project holds great promise for many important engineering and scientific 

applications. Such systems, which represent a type of non-traditional architecture, will address 
specific classes of mission-critical problems that have not been solved by the current state-of-the-
art CMOS digital computing. 

 
In the following sections, we describe the Methods, Assumptions, Procedures, Results and 

Discussions for each of the aforementioned contributions. 
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 
The project can be summarized into two interconnected research thrusts: 1) Thrust 1: design 

and implement analog neuron for data representation using spike timing dependent encoding in 
neuromorphic computing systems; 2) Thrust 2: explore the application of reservoir computing in 
MIMO Communications. 

 
In Thrust 1, the following research tasks were conducted to achieve the goals of the proposed 

research on Leaky Integrate-and-Fire (LIF)-based neuron design for reservoir computing systems: 
 
Task 1.1: Design and analyze the spiking neuron with LIF model 
 
In the proposed research, we compared analog and digital implementations of neurons using 

the LIF model and showed how signal-processing tasks can be modularly decomposed into 
elementary operators. We utilized the LIF model since it afforded both a simple structure and high 
accuracy compared to other neuron models; circuits designed using the LIF model have adequate 
balance between scale and accuracy. In a LIF circuit, the membrane capacitor is the key component 
for generating the membrane current. The LIF system fires when the membrane voltage exceeds a 
specific threshold voltage. A reset signal changes the membrane voltage and sets the refractory 
period. Subsequently, we modeled and designed a robust and compact analog neuron using CMOS 
technology. Design aspects such as integration time, threshold voltage, refractory period, and 
encoding resolution were examined to optimize the adaptability and configurability of the neurons’ 
operational parameters. Other characteristics, including power consumption, area, robustness to 
process variability, and signal-to-noise ratio (SNR) were also reported. 

 
Task 1.2: Develop neural encoding with multiplexed temporal scales 
 
In this project, we encoded neural responses at different time scales with different stimulus 

attributes, resulting in a temporal multiplexing of sensory information. Evidence was presented 
that showed that multiple neural codes operate simultaneously at different temporal scales, with 
each code carrying complementary information.  The performance of multiplexed codes was 
compared with that of rate and temporal codes and the computational advantages of such coding, 
including a reduction of the ambiguity inherent to single-scale codes and enhanced robustness of 
neural representations to environmental noises, were demonstrated.  

 
Task 1.3: Apply the time series spiking encoding to reservoir computing 
 
In this project, spike encoding methodologies for autonomous classification of time series 

signatures using near chaotic reservoir computing were explored. Reservoir computing, a 
computational paradigm inspired by neural systems, has become increasingly popular for solving 
a variety of complex recognition and classification problems as it combines the memory and 
spatio-temporal processing of recurrent neural network with the ease of training of linear 
regression. Reservoir computing has been demonstrated to outperform the classical techniques for 
several complex machine learning tasks such as speech recognition and motion detection. 

 
Herein we produced deliverables that include spike timing dependent encoding circuit design 

SPICE (Simulation Program with Integrated Circuit Emphasis) circuit models, and prototypes of 
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the circuits. As its final outcome, we demonstrated an agile hardware implementation of spike time 
encoding as a signal conditioner for dynamical reservoir computing processor designs. 

 
In Thrust 2, we completed the following tasks related the application of reservoir computing 

to MIMO Communications: 
 
Task 2.1: Build a mathematical model for multi-channel estimation 
 
A mathematical model and simulation platform for reservoir computing framework has been 

developed. Different types of reservoir computing, including the Liquid State Machine (LSM), the 
Echo State Network (ESN) and delay feedback reservoir networks, were considered. We found 
solutions to construct a good dynamical reservoir and develop efficient learning algorithms. The 
nonlinear dynamics and delay feedback of reservoirs enabled networks to mimic transient neuronal 
response and to project time-dependent input into high dimensionalities for categorization by an 
outside classifier.  

 
Task 2.2: Apply reservoir computing for channel estimation in MIMO systems 
 
In this task, we applied reservoir computing to communication channel estimation in MIMO 

systems.  Reservoir computing employs artificial recurrent neural networks in a way that has 
recently been proposed independently as a learning mechanism in biological brains. The learning 
method is computationally efficient and easy to use. In order to efficiently estimate channel state 
information for thousands of channels, MIMO systems depend on the accuracy of the underlying 
channel estimation, a challenging task with massive active entries in the channel matrix. 

 
Task 2.3: Demonstrate the computational efficiency and accuracy improvement. 
 
We compared the computational efficiency and accuracy of our proposed methodology with 

the classic methods including the least-square (LS)-based MIMO channel estimation and the 
minimum-mean-square-error (MMSE)-based MIMO channel estimation. The LS system conducts 
LS-based MIMO channel estimation first, and subsequently performs transmit symbol detection 
and demodulation based on the corresponding channel estimate. The MMSE system conducts a 
similar procedure using an MMSE MIMO channel estimator. Note that the MMSE estimator is 
currently the most popular choice, and has been adopted in modern Long-Term 
Evolution (LTE)/LTE-Advanced systems. 

 
The result of this task included a dynamic reservoir computing methodology specifically for 

channel estimation in MIMO system, as well as an analytical demonstration of the efficiency and 
accuracy comparison with state-of-the-art methodologies. The detailed schedule is listed in the 
timeline table as follows: 
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Table 1. Project Timeline  

 

The proposed research yielded technical status reports for program reviews, a final technical 
report, as well as the following items: 
• Circuit design, fabrication, and measurement materials including SPICE (Simulation Program 

with Integrated Circuit Emphasis) models, circuit schematics, layout, pre-layout and post-
layout simulation results, as well as the testing data for the analog neurons in neuromorphic 
computing; 

• Simulation results of reservoir computing based channel estimator, performance comparison 
among the reservoir computing, the LS, and the MMSE in channel estimation for MIMO 
system; 

• Publication in archival international journals and refereed professional conferences. 
 

3.1 ANALOG NEURON DESIGN IN NEUROMORPHIC COMPUTING 
Von Neumann Bottleneck, which refers to the limited throughput between the CPU and 

memory, has already become the major factor hindering the technical advances of computing 
systems. In recent years, neuromorphic systems started to gain increasing attention as compact and 
energy-efficient computing platforms. As one of the most crucial components in a neuromorphic 
computing system, neural encoders transform the stimulus (input signals) into spike trains. In this 
project, we adapted the inter-spike intervals (ISI) temporal encoding scheme and presented an 
analog temporal neural encoder with verification and recovery schemes. The proposed neural 
encoder allowed efficient mapping of signal amplitude information into a spike time sequence that 
represented the input data and offered perfect recovery for band-limited stimuli. With the novel 
iterative structure, the number of spikes increased exponentially with the number of neurons. From 
the measurements obtained from the fabricated neural encoder chip, our temporal encoder with the 
ISI encoding proved to be robust and error-tolerant. 

 

3.1.1 OPERATING PRINCIPLE 
Over the past decades, dedicated researchers have focused on understanding and investigating 

the biological neuron’s behavior. A neuron consists of four main parts: dendrites, soma, axon, and 
synapse. Signals are collected and transmitted to soma by dendrites. The soma serves as the central 
processing unit where the nonlinear processing is carried out. When the input exceeds a threshold, 
an output signal is generated, a so-called “firing stage.” The output is transmitted along the axon, 
and then to the other neurons through the synapse. In a biological neuron, the signals are in the 
form of a nerve impulse, called action potentials or spikes. When the stimulus reaches the threshold 
potential, an action potential is generated. If the threshold is not reached, the membrane potential 
will leak out. The depolarization and repolarization relate to the movement of sodium and 
potassium ions in the cell. After the firing, the neuron will go through a refractory period where 
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the neuron is less likely to fire. This process is known as the firing and resting of a biological 
neuron which is illustrated in Fig. 1. 

 
Various neuron models exist that exhibit the potential to accurately mimic the biological 

neurons. Some well-known and representative neuron models are investigated which include the 
Integrate-and-Fire (IF) model [1], the Hodgkin-Huxley (HH) model [2], the Fitzhugh-Nagumo 
(FN) model [3], and the Leaky Integrate-and-Fire (LIF) model [4]. 

 
The IF model is one of the earliest and simplest neuron models that possesses the basic spike 

firing ability. The simplified circuit and equation for IF model are shown in Fig. 2 (a). A parallel 
capacitor and resistor circuit is used to construct the electric circuit of the IF model. Iex is the 
excitation current, Cm is the membrane capacitance, and Vm is the membrane potential. An action 
potential would be generated when the membrane capacitor reaches the threshold potential. This 
is also known as the firing property of a neuron.  After the firing takes place, the capacitor would 
discharge. However, the IF model cannot be reset to the resting state. It will retain the membrane 
potential until the neuron fires again.  The violation of membrane potential reset property disables 
the IF model mimicking biologic neuron accurately.  

 
Compared to data extracted from the giant axon of a squid, the HH model is found to be 

biologically meaningful and realistic. The primary goal of the HH model is to mimic the electro-
chemical information transmission of a biological neuron. Fig. 2 (b) and (c) illustrate the simplified 
circuit and equation for HH and FN model. Na and K components in the figure represent the ion 
currents within the model. C is the membrane capacitance, and 𝐼𝐼𝑖𝑖(𝑡𝑡,𝑉𝑉) is the ion current traveling 
through the neurons which is governed by three more differential equations which are functions of 
time. Although the HH model closely models the biological neurons, due to the model’s 
complexity, it is too complex to analyze and implement in hardware. The FN model is considered 
a simplification of the HH model. Although the four-dimensional set of HH equations is reduced 
to two in the FN model, equations for both the HH and FN models are highly nonlinear and 
complicated.   

 
The leaky integrate-and-fire (LIF) model, illustrated in Fig. 2 (d), is based on the IF model, but 

with the leak term within the model. This term mimics the diffusion of ions that occurs through 
the membrane when some equilibrium is not reached in the cell. Similar to the IF model, the 
excitation current charges the membrane capacitor. When it exceeds the threshold potential, the 
neuron fires, else it will simply leak out any change in potential. After firing takes place, unlike 

 
Fig. 1 Action Potential of Biological Neuron 
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the IF model, the membrane potential resets to a new value which is lower than the threshold 
voltage for LIF model. As such, the LIF neuron model possesses both firing and resetting processes. 
This neuron model adequately resembles the biological neuron and is relatively easier to 
implement using analog circuits, as compared to the HH and FN models. Compared with other 
neuron models, LIF model plays a major role in neuron design due to its compact structure, robust 
performance, and adequate resemblance to the biological neuron behavior. In the LIF neuron 
model, Ileak is treated as a constant, and the relationship between excitation current and membrane 
voltage can be described using the simplest first order differential equation. However, HH neuron 
model has a much more complex differential equation form. In the LIF neuron model Iex is an 
independent variable (only related with time) while in HH neuron model the current 𝐼𝐼𝑖𝑖(𝑡𝑡,𝑉𝑉) is 
related not only with time but also with membrane voltage. In other words, HH is not a feed-
forward system but has feedback components. 

 
From the investigation of neuron models, benefits of LIF neuron model include:  
1) Adequate representation of neuron spiking activity with membrane decay which makes this 

model biologically meaningful to some extent; 
2) Mathematically simple compared to HH and FN neuron models;  

 
Fig. 2 Simplified Circuits for (a) Integrate-and-fire Model; (b) Hodgkin-Huxley Model; (c) 

Fitzhugh-Nagumo Model; (d) Leaky Integrate-and-fire Model 
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3) Since this neuron model possesses relatively simple structure, it is easier to be implemented 
in hardware. LIF neuron model is extensively employed in the state-of-art neuromorphic chips. 
IBM’s neurosynaptic core consists of 256 LIF neurons. In the BrainScaleS project, LIF neuron 
model is also adapted.  

 
After this comprehensive investigation of neuron models and their implementations in 

hardware, analog LIF neuron models were employed in our proposed neural encoder design. In 
the LIF based analog neuron, there are several key parameters, excitation current Iex, threshold 
voltage Vth, membrane capacitance Cm, and leakage current Ileak, that need to be carefully designed 
and analyzed. The relationship correlating these parameters is expressed as 

                                                   𝐼𝐼𝑒𝑒𝑒𝑒 = 𝐼𝐼𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙 + 𝐶𝐶𝑚𝑚
𝑑𝑑𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑

,                           (1) 
where Vmem represents membrane potential. In equation (1), the membrane potential is controlled 
by the excitation current and the leakage current, and vice versa. A simple resistor model is adapted 
to represent such relationship. Equation (1) can then be rewritten as the following,  

                                                   𝐼𝐼𝑒𝑒𝑒𝑒 = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙

+ 𝐶𝐶𝑚𝑚
𝑑𝑑𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑

,                 (2) 
where Rleak defines the weight resistor of leakage current. By solving equation (2), the expression 
for the membrane potential can now be determined, 

                                                    𝑉𝑉𝑚𝑚𝑒𝑒𝑚𝑚 = 𝐼𝐼𝑒𝑒𝑒𝑒𝑅𝑅𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙 − 𝑒𝑒
𝑡𝑡

𝑅𝑅𝐶𝐶𝑚𝑚    (3) 
 
When the membrane potential reaches the firing threshold voltage Vth, this membrane potential 

will reset to a new value which is lower than Vth. Such dynamic behavior is the firing and resetting 
process of LIF model. In our design, LIF model serves as the fundamental unit to ensure that the 
proposed encoder works stably and robustly. 

Typically, there are two types of implementations: analog and digital. Digital designs, as the 
most commonly used and developed, offer the usual digital advantages: noise immunity, ease of 
implementation, high density and mature manufacturing processes. However, in order to ensure 
the real-time operation, the digital signals are required to interface with the analog world which 
leads to the addition of digital-to-analog and analog-to-digital converters. Hence, when 
implementing some neural operations, such as multiplications, digital designs cannot achieve as 
small and simple structures as their analog counterparts. Analog implementation has the advantage 
of implicit real-time operation, resulting in smaller design area and lower power consumption. The 
total area of the 1 million neuron analog learning system is about 14 times smaller than that of the 
digital implementation at the 10 nm node [5]. Furthermore, since the analog neuron does not 

 
Fig. 3 Output Spike Train of LIF Neuron Model 
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require the signal to noise ratio (SNR) to be as high as the digital one, analog implementation was 
found to be approximately 20 times more energy efficient [5]. Most importantly, as the behavior 
of analog neuron is closer to the biological one, the analog implementation seems to be the logical 
choice for neuromorphic computing emulating the biological neural networks to a better extent. 
Fig. 3 illustrates the analog output spike trains of LIF neuron model. 
 
3.1.2 ENCODING METHODS 

In order to understand how the brain processes information, it is essential to discover the format 
of neural codes and how they relate to the sensory information. This requires a multidisciplinary 
approach involving psychophysics, neuroscience, et cetera.  

 
Neural encoders transform sensory information into spikes.  Research of the neural code format 

has been going on for many decades. Different approaches representing the encoded signal can be 
categorized into two distinct classes. One approach is to encode the information into spikes where 
only the number of spikes matters.  The other is to map the information into the temporal response 
structure. These two categories are known as rate encoding and temporal encoding schemes, 
respectively.  

  
(a) Digital rate encode (b) Analog rate encode 

 
 

(c) Digital TTFS encode (d) Analog TTFS encode 

 
(e) Analog ISI encode 

Fig. 4 Examples of Rate Encode and Temporal Encode in Both Digital and Analog Form 
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In aforementioned rate encoding scheme, all relevant information is encoded into the firing 

rate or spike number during a sampling period. This type of encoding scheme is most commonly 
used when implementing in hardware since spike characteristics other than the spike numbers are 
not brought into consideration. Although its simplicity is favorable, extra information in the 
temporal response structure is neglected. In other words, the timing does not play any roles in the 
rate encoding scheme, which makes it inherently ambiguous in changing environments. The 
analog rate encoding is shown in Fig. 4 (b).  

 
Recently, it has been discovered that neural representation does not only depend on spatial, but 

also temporal structure. The second category of encoding schemes is the temporal encoding in 
which there are two different branches. One depends on the time of arrival which makes use of the 
timing of the spikes from a starting point. Time-to-first-spike (TTFS) latency encoding scheme is 
one of the simplest examples. The other branch depends on the internal time correlation of spikes. 
Hence, the inter-spike intervals produced by neurons contain the encoded information under the 
input stimulus. The inter-spike intervals (ISI) encoding is the simplest example for this branch. 
Contrary to the rate encoding scheme, the information carried by the spike and the inter-spike 
intervals are all taken into consideration in the temporal encoding scheme.  

 
TTFS latency encoding is the simplest temporal encoding scheme where information is 

encoded into the time of the first spike from a starting point. As shown in Fig. 4 (c), this encoding 
scheme needs an external temporal reference frame to define the starting point. However, there is 
a major drawback for this encoding scheme. If the system performs abnormally and the neuron did 
not fire, the error would be enormous and dramatically affect the performance.  

 
Another type of temporal encoding scheme is called ISI temporal encoding which encodes all 

relevant information into several inter-spike intervals. Thus, ISI encoding responds to the relative 
time between spikes rather than the absolute time with respect to stimulus onset. Such encoding 
pattern allows each spike to be the reference frame with respect to each other; hence no external 
reference frame is required. Secondly, temporal encoding with ISIs takes advantage of using the 
correlations between each spike to encode information which cannot be incorporated by the rate 
encoding. Furthermore, the latest research suggests that temporal encoding more closely mimics 
biological signal encoding methods [6].  Evidently, compared to the TTFS latency encoding, ISI 
encoding is capable of carrying more information within in one sampling window, which is 
illustrated in Fig. 4 (e).  

 
When considering one sampling window in the rate encode, it is widely accepted that the time 

intervals between each spike are the same. Therefore, the key parameter, called firing rate, F, of 
rate encode, can be expressed as 

                                          𝐹𝐹 = 𝑁𝑁
(𝑁𝑁−1)𝑇𝑇

 ,                                                                                  (4) 
where N is the spike number, T is the interval time between each spike. Note that the unit of the 
firing rate is the number of spikes/second. Under ideal conditions, N-spike rate encoders would 
have N+1 kinds of patterns when the 0-spike case is taken into account. In order to fully use all 
the patterns, most state-of-the-art implementations adopt digitally designed rate encoding 
generators. In these rate encoders, each spike is represented as a square wave as shown in Fig. 4(a). 

In Fig. 4(a), the ∆𝑇𝑇 is the width of each spike.  Accordingly, equation (4) can be rewritten as 
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                                    𝐹𝐹𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑙𝑙𝑙𝑙 = 𝑁𝑁
(𝑁𝑁−1)(𝑇𝑇+∆T)+∆T

.                                                                  (5) 
The firing rate decreases in equation (5), leading to fewer pattern variations within one constant 

time period. Analog implementation of rate encoding is illustrated in Fig. 4(b). As shown therein, 
analog rate encoding can handle smaller spike widths, and, as a result, the firing rate can be 
expressed as 

                                    𝐹𝐹𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙𝑎𝑎𝑑𝑑 = 𝑁𝑁
(𝑁𝑁−1)(𝑇𝑇+∆τ)+∆τ

,                                                                   (6) 
where ∆𝜏𝜏  is one spike width. It is clear that 𝐹𝐹𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙𝑎𝑎𝑑𝑑 > 𝐹𝐹𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑙𝑙𝑙𝑙 , since ∆𝜏𝜏 < ∆𝑇𝑇  when other 
conditions are the same. However, error rate would become very large when the smallest resolution 
is adopted in the analog rate encoder. Therefore, various techniques for decreasing resolution must 
be applied to attain an acceptable error rate as compared to its corresponding digital 
implementation. 
 

In TTFS encoding, when the same spike width is adopted as in rate encoding, the total number 
of patterns for such kind of data format is 2𝑁𝑁 + 1. The minimum resolution of TTFS encode can 
be assumed as the spike width ∆𝑇𝑇 without loss of generality. The time interval from reference 
point to the first spike can be expressed as 

                                                      𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇1−𝑇𝑇0
∆𝑇𝑇

,                                                                  (7) 
where 𝑇𝑇1 represent the first spike’s appearing time point. Although an analog implementation of 
TTFS may generate more patterns than that of the digital implementation within the same time 
period, it suffers from high error rate if the minimum resolution is adopted. A balance is made by 
using a small spike train to substitute only one spike, which is illustrated in Fig. 4(d). The spike 
train must obey the constraint rule 

                       𝑀𝑀∆𝜏𝜏 = ∆𝑇𝑇,                                                                                    (8) 
where 𝑀𝑀 is the spike number and ∆𝜏𝜏 is one spike width. 

 
As shown in Fig. 4(e), 𝑛𝑛 + 1 spikes can build an 𝑛𝑛 − 𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ISI encoder. In the analog 

implementation, only spike intervals are taken into account. In the ideal case, each interval is 
independent of each other which can generate infinite types of patterns. This property of ISI encode 
can be described as 

                 𝑐𝑐𝑐𝑐𝑖𝑖(𝐷𝐷1,𝐷𝐷2, … ,𝐷𝐷𝑎𝑎) = 0,                                                                      (9) 
where 𝑐𝑐𝑐𝑐𝑖𝑖() represents the correlation operation. As shown in Fig. 4, the total number of patterns 
is much larger than the TTFS and rate encoders even if we take the resolution and error rate into 
consideration. Therefore, the ISI encoder is one of the best encoding schemes for spiking neural 
networks. However, it is very complex and challenging to implement this kind of infinite-pattern 
ISI encoder in hardware. In order to reduce the implementation complexity, we proposed a finite 
pattern ISI (FPISI) encoding format applicable for analog hardware implementation. In such an 
FPISI encoder, the correlation between each interval is not 0 anymore. The simplest case relates 
later intervals to previous ones; implementation of temporal encoding was first suggested in [6].  
All of the approaches used TTFS latency encoding.  
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3.1.3 DESIGN PROCEDURE 
Our proposed encoder consists of three layers, input layer, neuron pool, and output layer. The 

encoder adapts an iterative architecture in which each neuron works on separate clock periods. 
While the input layer serves as the pre-processing unit, an iterative characteristic is achieved by 
the neuron pool and the output layer. The details of each layer are presented in the following with 
the iteration scheme based temporal encoder shown in Fig. 5. 

 
As shown in Fig. 5, there are 8 modules in the encoder. These modules can be divided into two 

categories. The first one is referred to as the core temporal encoder part, including the “input layer”, 
“neuron pool”, and “output layer,” while the second one is referred to as the function part, as it 
contains the “signal generator”, “clock (CLK)”, “voltage reference”, “current reference”, and 
“bandgap reference”. The circuit designs for the input layer, neuron pool, and output layer are 
briefly presented in the following. 

 
When selecting the appropriate methodology to implement the input layer, we need to consider 

the trade-off between area, power consumption, and accuracy. A resistor scheme provides the 
simplest, easiest to implement structure, but, consumes the largest area which is not desirable. 
Although the operational amplifier scheme offers the most accuracy, it also consumes the most 
power, in direct opposition to our goal of being energy efficient. The single transistor scheme was 

 
Fig. 5 System Structure of the Proposed Temporal Encoder 

 

 
Fig. 6 Simplified Input Layer Circuit 
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ultimately selected as the model of choice as it provided an acceptable tradeoff between accuracy 
and power consumption. A diode-structured NMOS transistor, which works in the triode region, 
is implemented to achieve the desired performance as the current tuner. The simplified circuit of 
this part is illustrated in Fig. 6. 

 
As shown in Fig. 6, the upper part of the input layer is a current mirror cluster. The output 

excitation currents, in1 to in4, would be sent to neuron pool directly. The bottom part is an input 
buffer for the input analog signal. Transistors, N1 to N4, serve as a buffer allowing large-value 
voltage signals to be applied directly to the encoder.  

 
The second layer is the neuron pool, in which each neuron has its own priorities and works in 

separate clock periods. Since our proposed neural encoder provides a general encoding scheme, 
there is no restriction on the total number of neurons in our design. A general signal flow of the 
neuron pool is illustrated in Fig. 7. 

 

As shown in Fig. 7, there are three kinds of signals existing in the neuron pool, 𝐼𝐼𝑛𝑛𝑖𝑖, 𝑆𝑆𝑖𝑖, and 
𝑆𝑆𝑖𝑖,𝑖𝑖+1. 𝐼𝐼𝑛𝑛𝑖𝑖 is the input signal, composed of excitation currents and is determined by 𝑉𝑉𝑖𝑖. 𝑆𝑆𝑖𝑖 is the 
output signal of each neuron, and 𝑆𝑆𝑖𝑖,𝑖𝑖+1  is the iteration signal generated by the output layer. 
Although the exponential relationship between the neuron number and spike number is desirable, 
its corresponding hardware implementation is far more challenging. Evidently, the exponential 
relationship increases the number of spikes, thus offering the capability of containing more 
information with the same number of neurons than that of the linear proportional correlation. In 
this project, our proposed encoder successfully achieved the exponential relationship between the 
neuron number and spike number.  

 

 
 

Fig. 7 Neuron Pool Signal Flow Diagram 
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In our temporal encoder design, we assumed that every clock signal generates only one spike 
with each neuron. The global clock, CLK, only controls the first neuron in the neuron cluster. 
When one CLK signal arrives, the first neuron generates a single spike which is sent to the second 
neuron and the first combiner, respectively. The output spike generated by the first neuron serves 
as the clock signal for the second neuron, and the output spike of the second neuron is sent to the 
first combiner. The output of the first combiner is two spike signals, which are sent to the third 
neuron as its clock signal, and the second combiner. Consequently, the third neuron generates two 
more spikes which are sent to the fourth neuron and the second combiner. The output of the second 
combiner is four more spikes which are sent to the fourth neuron and the third combiner. By 
iteratively following the above scheme, the fourth neuron generates 4 spikes which are sent to the 
third combiner. Finally, the third combiner outputs 8 spikes following the rule of 24−1. Following 
this scheme, N neurons generate 2𝑁𝑁−1 spikes. Following the iterative structure of the encoder, the 
relationship between the neuron number and spike number can be expressed as 

                                                                 𝑆𝑆𝑁𝑁 = 2𝑁𝑁−1 ,                                     (10) 
where N is the total number of neurons and SN is the total number of spikes. 
 

The simplified circuit of the proposed neuron pool is illustrated in Fig. 8. As shown, Vleak 
generates the leakage current; CLKi are the sampling clocks; A is the analog signal being sampled 
and Si is the output signal. CLK1 is the global sampling clock. CLK2 to CLK4 represent S12 to 
S34 and the excitation currents I1 to I4 are generated by the input layer. In this neuron pool, four 
neurons are combined together. Different tags are assigned to each neuron as Ni, Bi, Di, and Pi. 
The membrane capacitors are marked C1 to C4, leakage transistors are labeled as Q1 to Q4, and 
feedback transistors are Q5 to Q8, corresponding to neurons with tag N to tag P. 

 
I1 begins to charge C1 while Vleak forces Q1 to work in the subthreshold region, providing a 

constant leakage discharging current. The total current is defined as Iin. The voltage increases as 
the charging process goes on, and NMOS transistor, N1, starts to work in the saturation region 
when the voltage on C1 reaches the threshold voltage. After N1 reaches the saturation region, the 

 

Fig. 8 Simplified Neuron Pool of the Proposed Temporal Encoder 
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current between N1 and N2 increases.  Taking the channel length effect into consideration, the 
current equation can be expressed as 
                                                  𝐼𝐼𝑑𝑑𝑑𝑑 = 𝐾𝐾�𝑉𝑉𝑑𝑑𝑑𝑑2 − 𝑉𝑉𝑑𝑑ℎ𝑎𝑎�

2
(1 + 𝜆𝜆𝑉𝑉𝑑𝑑𝑑𝑑2),    (11) 

where K is determined by physical parameters and transistor dimensions, 𝑉𝑉𝑑𝑑𝑑𝑑2 is determined by 
input signal 𝑖𝑖𝑛𝑛1 , 𝑉𝑉𝑑𝑑ℎ𝑎𝑎  is the threshold voltage of NMOS transistor, 𝜆𝜆 is channel length effect 
coefficient determined by physical process, and 𝑉𝑉𝑑𝑑𝑑𝑑2 is the drain-source voltage of transistor N2. 
Since 𝑉𝑉𝑑𝑑𝑑𝑑2 can be considered constant over a short period of time, equation (5) can be simplified 
to, 
                                                             𝐼𝐼𝑑𝑑𝑑𝑑 = 𝑈𝑈(1 + 𝜆𝜆𝑉𝑉𝑑𝑑𝑑𝑑2),                  (12) 
 
where U is a constant value. As shown in equation (11), Vds2 would increase correspondingly when 
Ids increases and Ids is controlled by the voltage on C1. Transistors, N3 and N4, transform the high-
level voltage Vds2 into a low-level voltage. At that point, CLK1 turns ON; this behavior can control 
the gate voltage of transistor N8 which can generate discharge current for membrane capacitor C1. 
Such a discharging process moves N1 out of the saturation region and finally pulls the voltage Vds2 
into a low-level. Transistor N8, designed as a wide NMOS transistor, ensures that the discharging 
process is rapid. After membrane capacitor C1 is discharged, transistor Q5 works with I1 and 
leakage current to force the membrane potential to the rest level. No spike will be fired during the 
refractory period, controlled by CLK1. The membrane potential charging and discharging process 
is illustrated in Fig. 9. 
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The third important module is the output layer. The signal flow diagram of the output layer is 
shown in Fig. 10. There are four kinds of signals inside the output layer, the output signals from 
neuron pool, feedback signals for the neuron pool, the final output signal, and inspection signals. 
Among them, inspection signals serve as verification signals to increase the error tolerance of the 
proposed encoder. The simplified circuit of the corresponding output layer is illustrated in Fig. 11. 
As shown in Fig. 7, for a 4-neuron based temporal encoder, 3 combiners are required to produce 
an output layer. It is clear that the output layer circuit is constructed with three combiners having 
the same structure. Taking the first combiner as an example, S1 and S2 are input spike signals. At 
one time, only one spike is accepted by the combiner. When a spike is input through S1, Q1 will 
be in the cutoff region and Q6 will work in the saturation region. Therefore, the voltage on the 
gates of transistor Q2 and Q5 will equal to the drain voltage of Q6 which can be treated as low 
voltage. In this situation, Q5 goes into the cutoff region and Q2 works in the saturation region. The 
final output after Q2 will be at a high voltage level. In other words, this combiner accurately 
duplicates the input spike. The delay of each combiner is less than 10 ps, guaranteeing that no 
significant error is introduced. In this output layer, the inspection signals are the same as 𝑆𝑆𝑖𝑖,𝑖𝑖+1 
signals. 

 
Fig. 9 Membrane Potential Variation Diagram and Relevant Active Elements 

 
Fig. 10 Output Layer Signal Flow Diagram 
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3.2 APPLICATION OF NEUROMORPHIC COMPUTING IN WIRELESS 
COMMUNICATIONS 

Reservoir computing (RC) is attracting widespread attention in several signal processing 
domains owing to its nonlinear time series signal computation. It deals particularly well with time-
series prediction tasks and reduces training complexity over recurrent neural networks. It is also 
suitable for hardware implementation whereby device physics are utilized in performing data 
processing. In this project, the RC concept is applied to modeling a Multiple-Input Multiple-Output 
Orthogonal Frequency Division Multiplexing (MIMO-OFDM) system. Due to the harsh 
propagation environment, the transmitted signal undergoes severe distortion that must be mitigated 
at the receiver. The nonlinear distortion introduced by the power amplifier at the transmitter further 
complicates this process. An effective channel estimation scheme is therefore required. In this 
project, we introduce an MIMO-OFDM channel estimation scheme utilizing RC.  

 

3.2.1 NEUROMORPHIC COMPUTING METHODS  
The information processing methodology in the mammalian brain has always not only 

intrigued but also inspired the researchers in creating systems that mimic the learning function of 
brains. Artificial neural networks (ANN) were proposed to achieve this goal. Traditional 
computing systems, von Neumann systems, are not proficient in performing the tasks of the human 
brain. Novel computing systems have been created to mimic the biological neural networks and to 
carry out tasks such as image analysis, pattern recognition, et cetera. By training ANNs in such a 
system the desired functionality and learning can be accomplished. Feed-forward neural networks 
(FNNs) are one of the earliest ANNs whereby neurons are connected in a feed-forward architecture. 
Different from the FNNs, the recurrent neural networks (RNNs) are based on the structure of the 
FNNs but with recurrent connections within the network. These recurrent connections enable the 
RNN to possess the capability of solving complex temporal tasks, such as temporal classification, 
regression or prediction. However, when training the RNN, those feedback loops make the system 
too complex to train, thus leading to high computational power and time-consumption.  

 
Fig. 11 Simplified Output Layer Circuit 
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Over the past decades, a novel computing technique has been discovered and developed, 
known as reservoir computing. There are three layers in reservoir computing: an input layer, a 
reservoir, and an output layer. Inputs are transmitted to the reservoir layer through connection 
weights. The reservoir is based on the recurrent network where the nonlinear processing takes 
place. In the reservoir, the nodes are generally randomly connected, however, these synaptic 
weights are not trained. Unlike the RNN, in reservoir computing, only the output weights are 
trained. Since the weight connection within the reservoir is not trained, the model complexity is 
reduced tremendously.  The architecture of reservoir computing is illustrated in Fig. 12.  

 
Two models were introduced, echo state networks and liquid state machines. In contrast to the 

echo state networks, liquid state machines adapt spiking trains as inputs and outputs.  By only 
training the output weights, not much attention needs to be paid to the reservoir parameters, greatly 
reducing the task complexity.  

 
For the echo state network, the recurrent connection weights within the reservoir and the 

weight matrix for the input layer are randomly generated over the interval of -1 to 1. Since only 
the output weight is trained, the training process becomes a linear regression. One of the key 
properties that the model must satisfy is the echo state network property, where the spectral radius 
must be less than 1. In the echo state network, the transfer function used is typically the hyperbolic 
tangent function. Similar to the echo state network, liquid state machines are also based on 
adapting the random recurrent network as the reservoir. In the liquid, serving as the reservoir in 
the liquid state machine, internal noise must be taken into consideration. One of the major 
differences between these two types of reservoir computing techniques is the signal format. In the 
liquid state machine, spiking trains are used as inputs and outputs. 

 
In echo state networks the node states at time step k are computed according to the following 

equation: 
                                         𝑥𝑥(𝑘𝑘) = 𝑓𝑓[𝑊𝑊𝑟𝑟𝑒𝑒𝑑𝑑

𝑟𝑟𝑒𝑒𝑑𝑑. 𝑥𝑥(𝑘𝑘 − 1) + 𝑊𝑊𝑖𝑖𝑎𝑎
𝑟𝑟𝑒𝑒𝑑𝑑.𝑢𝑢(𝑘𝑘 − 1),                              (13) 

where x(k) is the vector of new node states at time step k, u(k−1) is the input matrix. The matrices 
𝑊𝑊𝑟𝑟𝑒𝑒𝑑𝑑

𝑟𝑟𝑒𝑒𝑑𝑑 and 𝑊𝑊𝑖𝑖𝑎𝑎
𝑟𝑟𝑒𝑒𝑑𝑑 represents the reservoir and input connection weights those are chosen in a random 

 
Fig. 12 Architecture of a delayed feedback reservoir with a nonlinear node and delay line 
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manner.  The output is a weighted linear combination of the node states, a constant bias value, and 
the input signals themselves. 

                                          𝑦𝑦�(𝑘𝑘) =  𝑊𝑊𝑟𝑟𝑒𝑒𝑑𝑑
𝑎𝑎𝑜𝑜𝑑𝑑. 𝑥𝑥(𝑘𝑘) + 𝑊𝑊𝑖𝑖𝑎𝑎

𝑎𝑎𝑜𝑜𝑑𝑑.𝑢𝑢(𝑘𝑘 − 1) + 𝑊𝑊𝑏𝑏𝑖𝑖𝑙𝑙𝑑𝑑
𝑎𝑎𝑜𝑜𝑑𝑑                     (14) 

In reservoir computing only the weights in equation (2) are used to train to minimize the mean 
square error between the calculated output values 𝑦𝑦�(𝑘𝑘) and the target output values y(k).  

 
Recently, another system has emerged which can serve as the reservoir. Appeltant [7] showed 

that delayed feedback systems have the potential to outperform echo state networks. This type of 
system takes places not only in our daily life, but also in human brains. Delay that occurs between 
two neurons is known as the axonal conduction delay. In practice, delay can be either destabilizing 
or stabilizing (if beneficially exploited) [7]. One of the simplest possible delay systems consists of 
a single nonlinear node whose dynamics are influenced by their own output at time 𝜏𝜏 in the past. 
Such a system is easy to implement, because it is comprised of only two elements, a nonlinear 
node and a delay line/loop. The delay line/loop goes through a number of virtual nodes. Each 
virtual node is separated by an equidistant delay 𝜃𝜃. Each virtual node holds the delayed version of 
previous node’s output in time  𝜃𝜃 = 𝜏𝜏

𝑁𝑁
, where 𝑁𝑁  represents the number of virtual nodes. The 

dynamic characteristics of this system can be influenced by simply changing feedback strength or 
the delay interval 𝜃𝜃 and 𝜏𝜏. The numerical results show that the delayed feedback reservoir has 
approximately identical performance to traditional reservoir computing. The output nodes are 
linear weighted sums of the tapped states in the delay line given by [7] 

                                       𝑦𝑦�(𝑡𝑡) =  ∑ 𝑤𝑤𝑖𝑖. 𝑥𝑥 �𝑡𝑡 −
𝜏𝜏
𝑁𝑁

(𝑁𝑁 − 𝑖𝑖)�𝑁𝑁
𝑖𝑖=1 .                                      (15) 

 
Delayed feedback networks exhibit the properties of high dimensionality and short term 

memory, qualifying them as candidates for a reservoir. The delayed feedback system comprises 
only one physically present nonlinear node that drives all the virtual nodes in the delay line. Hence 
all node states originate from the same transformation and there is no possibility to implement a 
scaling factor in the virtual node itself. This is done by introducing a mask function M(t) that 
imprints coupling weights from the stream I(t) to the virtual nodes. Where M(t) is defined as M(t) 
= 𝑊𝑊𝑖𝑖𝑎𝑎

𝑟𝑟𝑒𝑒𝑑𝑑 for (i − 1) θ ≤ t ≤ iθ, and M(t + τ) = M(t). 
 
This mask function is a piecewise constant function that remains constant over an interval of 

θ and is periodic, with period τ. The values of the mask function during each interval of length θ 
are chosen independently at random from some probability distribution. 

 
The output from the reservoir undergoes a training process in which a training algorithm is 

employed. The objective of the training process is to ensure the weighted sum of the states 
approaches the target output value. After training, testing is conducted wherein previously unseen 
input data from the same class of input data for training is fed into the system. 
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3.2.2 SYSTEM MODEL AND ASSUMPTIONS 
Block-structured nonlinear systems: We are particularly interested in the applications of the 

nonlinear MIMO-OFDM communication channel which constitutes one of the most important 
technologies used in current and emerging telecommunication systems. An interesting issue with 
these systems is that the communication channel can be modeled as block-structured nonlinear 
systems, i.e. series cascades of nonlinear and linear blocks. A nonlinear MIMO-OFDM system is 
composed of memoryless nonlinear blocks in parallel, corresponding to the power amplifier (PA), 
followed by a linear mixer which in a single-input-single-output OFDM system is a linear Finite 
Impulse Response (FIR) filter corresponding to the frequency selective fading wireless link. 

 
Fig. 13 Discrete-Time Equivalent Baseband OFDM System 

 
OFDM System: We consider a discrete-time equivalent baseband OFDM system (Fig. 13). The 
time-domain symbols with the cyclic prefix (CP) are then amplified by a PA that is modeled as a 
Saleh model. It is worth mentioning that when the PA is linear, the cyclic prefix can avoid inter-
symbol interference (ISI) and inter-carrier interference (ICI), ensuring the orthogonality between 
the subcarriers. However, as shown in the sequel, for a nonlinear PA, some ICI is introduced in 
the received signals, even when a cyclic prefix is used. The effect of the nonlinear amplifier 
depends on the operating point, which is the average power of the input signals. Input back-off 
(IBO) and output back-off (OBO) are two common parameters to verify the nonlinear distortion. 
It is worth noting that due to the presence of PAs, a high PAPR causes the introduction of nonlinear 
ICI in the received signal if a high input back-off (IBO) is not used; this can significantly 
deteriorate the recovery of the information symbols. A high IBO results in a low-power efficiency 
of the PA and a low signal-to-noise ratio (SNR) at the receiver. Moreover, it may limit the battery 
life for mobile applications.  
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3.2.3 RC BASED CHANNEL ESTIMATION SCHEME 
Inspired by the fact that there is a nonlinear time-varying distortion of the signal whilst 

propagating through the wireless channel, RC is applied to time domain channel estimation. In 
specific, the wireless channel between the transmitter and receiver is a multipath propagation 
environment that exhibits the properties of time variance and frequency selectivity.  

 
Fig. 14 shows a general model of a reservoir computing system with three key components: 

input layer, reservoir, and output layer. The matrix of Wsys is the input weight matrix, Win is the 
internal layer weight matrix, and Wback is the feedback weight matrix. In reservoir computing, only 
the output matrix weight matrix (Wout) needs to be trained; this is achieved using offline training 
with a conventional gradient-descent-training (GDT) algorithm. In this context, the reservoirs 
function as time-delayed recursive networks that use feedback as the short-term dynamic memory 
for the processing of time-series input signals. Since reservoirs are nonlinear and can operate near 
the edge of chaos, they provide extreme sensitivity to input variations and large degrees of 
signature separability for increased resolution in classification tasks—properties that are crucial 
for channel estimation.  

 

A transmitted signal undergoes attenuation, delay and phase shifts during propagation through 
the channel. Therefore, the wireless channel acts as a time-varying FIR filter. Successful decoding 
of the received signal necessitates that the distortion introduced by the channel be mitigated. 
Therefore, an effective channel estimation scheme is of paramount importance. In this section, we 
show that this behavior of the nonlinear time variant system can be efficiently predicted and 
consequent distortion combatted using RC. In a baseband OFDM system, the transmitted and 
received signals as well as the channel coefficients are complex. If we assume a single-tap channel 
and N subcarriers, then the channel coefficient is given by: 

                                                     ℎ = Re(ℎ0) + 𝑗𝑗Im(ℎ0)         .                                        (16) 
 

Fig. 14 General Model of Reservoir Computing System 
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Ignoring white noise, the complex time-domain received signal yn is obtained from the 
complex time-domain input sequence xn by: 

                                 Re(𝑦𝑦𝑎𝑎) =  Re(𝑥𝑥𝑎𝑎)Re(ℎ0) − Im(𝑥𝑥𝑎𝑎)Im(ℎ0) 
                  Im(𝑦𝑦𝑎𝑎) =  Re(𝑥𝑥𝑎𝑎)Im(ℎ0) − Im(𝑥𝑥𝑎𝑎)Re(ℎ0)                                        (17) 

 
From (17), it is observed that the real and the imaginary parts of the received signal depend on 

both the real and imaginary parts of the transmitted signal and the channel coefficient. However, 
the RC can only operate on real numbers at its input and output nodes. Therefore, we use an RC 
scheme with two input and two output nodes. The RC takes as input the complex time-domain 
received signal with the cyclic prefix added, and outputs an estimate of the complex time domain 
transmitted signal.  

 

4.0 RESULTS AND DISCUSSION 
4.1 PERFORMANCE ANALYSIS OF ANALOG NEURONS  

In this section, we show the post layout simulation and measurement results, and robustness 
and energy efficiency analysis of the proposed temporal encoder. The whole layout view of the 
encoder chip is illustrated in Fig. 15. 

 

 
Fig. 15 Whole Layout View of the Encoder Chip 

 



Approved for Public Release; Distribution Unlimited.  
 25  

 

As shown in the Fig. 15, one core part of the encoder and one function module work together 
to achieve the temporal encoding process. The detailed layout view of the single neuron and neuron 
cluster are illustrated in Fig. 16 and Fig. 17, respectively. 

 

Fig. 16 Single Neuron Layout View 

 

Fig. 17 Neuron Cluster Layout View 
 
To test the encoding capability of our design, the post-layout simulation for the encoder has 

been executed. The simulation result is illustrated in Fig. 18. 
 

 
Fig. 18 Post-Layout Simulation of the Proposed Temporal Encoder 
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The red lines in Fig. 18 represent temporal spike codes, and the blue line represents analog 
input signal. As shown in Fig. 18, there are three sets of spike trains which contain 8 spikes in each 
sampling window. In our encoder, 4 neurons are used to construct the encoder. The number of 
spikes is 8, which satisfies the design specification:  𝑆𝑆𝑆𝑆𝑖𝑖𝑘𝑘𝑒𝑒 𝑛𝑛𝑢𝑢𝑛𝑛𝑛𝑛𝑒𝑒𝑖𝑖 = 2𝑁𝑁𝑒𝑒𝑜𝑜𝑟𝑟𝑎𝑎𝑎𝑎 𝑎𝑎𝑜𝑜𝑚𝑚𝑏𝑏𝑒𝑒𝑟𝑟−1 = 8. One 
single extraction window of the output spikes is illustrated in Fig. 19. 

 

 
Fig. 19 One Sample of the Post-Layout Simulation Results 

 
The microscope photo of this chip is shown in Fig. 20, and a two-sample output temporal codes 

are shown in Fig. 21. Without loss of generality, 10 sampling points are chosen from 100 sampling 
points, and the result is shown in Fig. 22. 

 

 
Fig. 20 Microscope Photo of the Proposed Temporal Encoder Chip 

 

 
Fig. 21 Measurement Results of Two Samples 
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Fig. 22 Normalized Verification Value 
 

As shown in Fig. 22, the difference between the maximum and minimum value is around 0.057 
which indicates that all the verification values are distributed within this extremely small range. 
The maximum error is less than 0.034 which represents 8.16×10-4 us. Compared to the order of 
magnitude of our sampling time, 1 us level, such error can be ignored. Fig. 22 demonstrates the 
high accuracy of our temporal encoder. External verification is another important aspect of the 
proposed encoder. In order to evaluate its performance, one segment of output temporal encode 
extracted from the measurement data, which is shown in Fig. 23, has been taken into account to 
illustrate how this kind of error-tolerance mechanism works. 

 

 

Fig. 23 Output Temporal Encode From the Chip 
 
As shown in Fig. 23, some inspection spikes, illustrated with red dashed line, are missing. The 

error rate is illustrated in Fig. 24. 
 

 
Fig. 24 Inspection Error 
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As shown in Fig. 24, the difference between the maximum value and the minimum value is 
around 0.022 us. This is much smaller than the minimum resolution of each single temporal 
encoding of 0.1 us. 

 

4.2 PERFOMANCE EVALUATION AND DISCUSSION OF RC-BASED 
CHANNEL ESTIMATION 

In this section, we will present the simulation results for the proposed RC-based channel 
estimator. We consider a block-fading channel model for the MIMO-OFDM system, in which an 
independent channel realization occurs for every 19 OFDM symbols. In the construction of the 
nonlinear block-fading channel model, the nonlinear power amplifier model was incorporated into 
the channel model. We assume that the parameters of the nonlinear power amplifier are the same 
across all transmit antennas in the MIMO-OFDM system.  

 
The bandwidth of the OFDM system simulated was set at 2.05 MHz, the Doppler frequency 

was set at 100 Hz. For the wireless channel, the channel impulse response length was considered 
to be 8. A 512-pt FFT was used over a total of 1000 OFDM transmitted symbols, where for 19 
OFDM symbols, the channel was considered unchanged. 16-QAM modulation scheme was 
employed and the parameters for the nonlinear power amplifier, i.e., Clip Level and Shape 
parameter, were set at 3dB and 1, respectively. 

 
We use the bit error rate (BER) as a performance measure for measuring the effectiveness of 

our approach. Two sets of simulations were performed. At first, the BER was simulated for 
different number of neurons in the reservoir in order to find out a suitable value of the reservoir 
size. Using this value, we proceed to simulate the BER for different SNR values. The connectivity 
of the reservoir, which refers to the number of non-zero entries in the internal weight matrix W, 
and the spectral radius were set at 20% and 0.98, respectively.  

 
We analyzed the effect on the BER of the MIMO-OFDM systems while increasing the number 

of reservoir neurons in increments of 20, starting with 2 neurons, for three different SNR values: 
10 dB, 20 dB and 30 dB. The expected trend is that as the number of neurons increases, the 
performance of the RC should increase and hence a lower BER should be observed. With the 
increase of the number of neurons, a higher dimensionality is available for resolving the inputs as 
more neurons are available for the per-input-sample for the same dimensions of the input. Fig. 25 
shows the BER curves for the nonlinear MIMO-OFDM system. For this system a convex shaped 
curve is obtained, with a minimum BER occurring in the approximate region of 50 to 100 neurons. 
Fig. 25 illustrates that by increasing SNR value, the magnitude of the minimum BER decreases. 
However, the value of the minimum BER falls in the range from 50 to 100 neurons. The results 
make intuitive sense, since, as we have simulated an OFDM system with 512 subcarriers and used 
a reservoir with 20% connectivity, the number of non-sparse connections is around 500 when there 
are around 50 neurons in the reservoir. In this condition, each of the 512 orthogonal subcarriers 
can be independently resolved by the reservoir in the projection space. If there are lower than 50 
neurons, there is an inadequate number of reservoir connections compared to the number of 
subcarriers and hence they cannot be independently resolved. When there are more than 50 neurons, 
a single subcarrier can be resolved into more than one dimension in the projection space, resulting 
in redundancy, which in effect increases BER. 
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Fig. 25. BER for Different Number of Reservoir Neurons in MIMO-OFDM System 

 

 
Fig. 26 Bit Error Rate vs. Signal-to-noise Ratio for a nonlinear MIMO-OFDM system 

 
Fig. 26 shows the performance comparison among reservoir computing schemes, the LS, and 

the MMSE, conducting transmit symbol detection in a 2x2 MIMO system: The LS-based MIMO 
channel estimation performs transmit symbol detection and demodulation based on the 
corresponding channel estimate. The MMSE-based MIMO channel estimation conducts a similar 
procedure subject to a minimum-mean-square-error constraint. It is worth noting that the MMSE 
estimator is currently the most popular choice, and has been adopted in modern LTE/LTE-
Advanced systems. By contrast, the reservoir computing system conducts symbol detection and 
demodulation directly. Without considering the nonlinear effects of the underlying channel (e.g., 
nonlinear effects of the power amplifier), the reservoir computing system’s BER performance is 
similar to that of the MMSE system and is superior to that of the LS system. However, as SNR 
increases, the nonlinear power amplifier becomes the dominant source of signal corruption. When 
the nonlinear effects introduced by the power amplifier are taken into account, the RC system 
outperforms the LS system when the SNR is above 5 dB and outperforms the LMMSE system 
when the SNR is above 12 dB, as shown in Fig. 26. This result clearly demonstrates the superior 
performance of reservoir computing for dynamic communication systems. 
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5.0 CONCLUSIONS 
In this project, we designed and implemented analog neurons for data representation using 

spike timing dependent encoding in reservoir computing systems, and explored the application of 
reservoir computing in wireless communication systems. As a result, introduced an 
interdisciplinary approach for exploring the application of neuromorphic computing in wireless 
communications, and bridged the field of high-performance computing, semiconductor, and 
communications, as well as improved the computational efficiency and accuracy of channel 
estimation in wireless communications. 

 
The key technologies and components for successfully achieving the goals of this proposal 

were: design and analysis of the spiking neuron with multiplexed temporal scales, development of 
a reservoir computing platform with time series spike encoding, and application of reservoir 
computing to the multi-channel estimation in MIMO systems. Such research holds great promise 
for many important engineering and scientific applications. Such systems, which represent a type 
of non-traditional architecture, hold great promise to address specific classes of mission-critical 
problems that have not been solved by the current state-of-the-art CMOS digital computing. 

 
At last, we summarize the technical accomplishments in this project: 
1. A robust and compact analog neuron using 180nm CMOS technology was designed and 

fabricated. Design aspects such as integration time, threshold voltage, refractory period, 
and encoding resolution were examined in an effort to optimize the adaptability and 
configurability of the neurons operational parameters. Other characteristics, including 
power consumption, area, and robustness to process variability, as well as signal-to-noise 
ratio (SNR), were also reported. 

2. We introduced a MIMO-OFDM channel estimation scheme utilizing reservoir computing 
as a powerful recurrent neural network that can predict time-series very well. We compared 
the performance of the introduced channel estimation scheme to other popular ones in 
terms of bit-error-rate. Simulation results demonstrated the efficiency of the introduced 
channel estimator in modeling the channel behavior and compensating for nonlinear 
distortion. 

3. Two Journal paper have been published including "Spike-Time-Dependent Encoding for 
Neuromorphic Processors," ACM Journal on Emerging Technologies in Computing 
Systems (JETC), vol. 12, no. 3, pp. 23 – 46, 2015, and “Energy Efficient Spiking Temporal 
Encoder Design for Neuromorphic Computing Systems” has been accepted by IEEE 
Transactions On Multi-Scale Computing Systems (TMSCS), vol. 2, no. 4, pp. 265-276, 
2016. 

4. Six Conference paper have been published/accepted including “Channel Estimation in 
Wireless OFDM Systems Using Reservoir Computing,” and "Neuromorphic Encoding 
System Design with Chaos Based CMOS Analog Neuron,” in Proceedings of 2015 IEEE 
Symposium on Computational Intelligence for Security and Defense Applications 
(CISDA), “An Energy Efficient Decoding Scheme for nonlinear MIMO-OFDM Network 
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using Reservoir Computing,” has been published in Proceedings of IEEE International 
Joint Conference on Neural Networks (IJCNN), 2016, “Making neural encoding robust and 
energy-efficient: an advanced analog temporal encoder for brain-inspired computing 
systems” has been accepted by 2016 IEEE/ACM International Conference on Computer 
Aided Design (ICCAD), “Novel Spiking Temporal Encoder for Brain-inspired Computing 
Systems” has been accepted by 2016 IEEE/ACM Design Automation Conference (DAC) 
Work-in-Progress Session,  and “Analog Spiking Temporal Encoder with Inter-spike 
Intervals with Verification and Recovery Scheme for Neuromorphic Computing Systems,” 
has been accepted in IEEE Intl. Symposium on Quality Electronic Design (ISQED) 
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